Главная страница

За использование материалов, приведенных на этом сайте, в целях, связанных с нарушением законов РФ, авторы, дизайнеры, а также люди принимавшие участие в его создании ответственности не несут.


Радиомикрофон, как следует из названия, это микрофон, объединенный с радио, т.е. с радиоканалом передачи звуковой информации. В настоящий момент нет устоявшегося названия этих устройств. Их называют радиозакладками, радиобагами, радиокапсулами, иногда - "жуками", но все-таки самым точным названием следует признать название, вынесенное в заголовок данного раздела. Мы будем придерживаться в дальнейшем этого названия, хотя оно и не самое "сочное" из перечисленных. Радиомикрофоны являются самыми распространенными техническими средствами ведения коммерческой разведки. Их популярность объясняется прежде всего удобством их оперативного использования, простотой применения (не требуется длительного обучения персонала), дешевизной, очень небольшими размерами.

В самом простом случае радиомикрофон состоит из собственно микрофона, т.е. устройства для преобразования звуковых колебаний в электрические, а также радиопередатчика - устройства, излучающего в пространство электромагнитные колебания радиодиапазона (несущую частоту), промодулированные электрическими сигналами с микрофона. Микрофон определяет зону акустической чувствительности (обычно она колеблется от нескольких до 20 - 30 метров), радиопередатчик - дальность действия радиолинии. Определяющими параметрами с точки зрения дальности действия для передатчика являются мощность, стабильность несущей частоты, диапазон частот, вид модуляции. Существенное влияние на длину радиоканала оказывает, конечно, и тип радиоприемного устройства.

Более подробные данные по конкретным моделям приведены в табл. 1.1. Как видно из данной таблицы, дальность действия, габариты и время непрерывной работы находятся в очень тесной зависимости друг от друга. В самом деле, для увеличения дальности необходимо прежде всего поднять мощность, одновременно возрастает ток, потребляемый от источника питания, который быстрее расходует свой ресурс, а значит, сокращается время непрерывной работы. Чтобы увеличить это время, увеличивают емкость батарей питания, но это увеличивает габариты радиомикрофона. Можно увеличить длительность работы передатчика введением в его состав устройства дистанционного управления (включение-выключение), однако это также увеличивает габариты. Кроме того, нужно иметь в виду, что увеличение мощности передатчика облегчает возможность его обнаружения. Наличие такого большого количества моделей радиомикрофонов объясняется тем, что в различных ситуациях требуется определенная модель.

Таблица 1.1. Технические данные радиомикрофонов промышленного изготовления.

МодельГабаритыТип и напряжения питанияВесТип корпусаДальность действияКаналыВpемя непрерывной pаботыДополнительные данные
AZ-110A70х35х20От сети 110 или 220 В 45гТройник для быт.аппаратуры100-2003(А,В,С)Не ограниченРаботает от сети переменного тока и неограничен, одновременно используется как тройник для бытовой аппаратуры.
СD-500S86х545х4.5Лити.бат. CR-2430(3В)20гКредитная карточка200-3003(А,В,С)30 часовПлоский, как кредитная карта, передатчик. Легко использовать при любых обстоятельствах.
РК-3ООДлина 130 ммбатареи SR-48W (1.5В)х2 120гАвторучка100-2003(А,В,С)15 часовОдна из наиболее интересных моделей. Ручкой можно пользоваться не вызывая подозрений.
N-110N-262x18x9сеть 110B, сеть 220В 20гПластмассовый100-2003(А,В,С)Не ограниченТайный секpетаpь. Скpытый.
ТК-400М166х27х14Литие.бат. СВ-12600SЕ52гПластмасовый прямоугольный500-10003(А,В,С)130 часовМикрофон в виде булавки для галстука, внешний микроскопический микрофон, микрофон в виде иглы.
СAL-205180x135х40Сеть 220В и аккуму. бат.350гНастольный калькулятор100-2003(А,В,С)Не ограничен12-pазрядный калькулятор и микрофон могут работать одновременно.
ТК-400166х27х14Литие.бат. СВ-12600SЕ52гПластмасовый прямоугольный1500-10003(А,В,С)130 часовОбеспечивают высокое качество звука.
DХ-40084х56х22Литие.бат. 2СВ-5 (6В)х1 130гПластмасовый прямоугольный корпус1000-15003(А,В,С)15 часов Микрофон в виде булавки для галстука передает звук и прерывистый тональный сигнал.
СAL-201128x70x18Щелочн.бат. АМ-З (1,5В)х2100гЗакамуфлирован под калькулятор100-2003(А,В,С)150 часовВстроенный высокочувствительный микрофон. Можно одновременно пользоваться калькулятором.

Распространенным явлением является маскировка радиомикрофонов под какие-то устройства двойного назначения: зажигалки, калькуляторы, часы и т.д. Интересными являются изделия САL-201 и САL-205, замаскированные под калькуляторы, с питанием от сети. Это позволяет заодно решить и проблему питания, т.к. встроенные аккумуляторы имеют возможность зарядки от сети. Существуют модели, выполненные в виде заколки или зажима для галстука, наручных часов и др., подключаемые к передатчику или магнитофону, в зависимости от цели операции. Высокочувствительные миниатюрные микрофоны в авторучке, наручных часах, в значке и др. позволяют записать важную беседу в шумном месте. Электропитание от часовой батарейки обеспечивает непрерывную работу встроенного усилителя в течении нескольких месяцев. С помощью миниатюрного микрофона с усилителем удобно контролировать помещения, например, через имеющиеся вентиляционные отверстия. К проводу, выходящему от такого микрофона в соседнее помещение, подключается либо радиопередатчик, либо магнитофон.

Еще более интересной является схема оперативного применения радиомикрофона, реализованная в изделии SIPE-PS. Это комплект, состоящий из бесшумного пистолета с прицельным расстоянием 25 м и радиомикрофона-стрелы. Он предназначен для установки радиомикрофона в местах, физический доступ к которым невозможен. Радиомикрофон в виде наконечника стрелы в ударопрочном исполнении надежно прикрепляется к поверхностям из любого материала - металла, дерева, бетона, пластмассы и т.д. Тактика применения его следующая: стрела отстреливается через, например, открытую форточку и прикрепляется к стене. В реальных условиях города дальность действия радиомикрофона не превышает 50 м, и это обстоятельство снижает оперативную ценность системы. Аналогичный комплект фирмы CCS включает арбалет и несколько стрел-дротиков. Это модель STG 4301. Микрофон обеспечивает контроль разговора в радиусе до 10 м, а передатчик передает сигнал на приемник, находящийся на расстоянии до 100 м. Как уже говорилось, ограничивающим фактором является питание. Для увеличения времени функционирования стараются увеличить емкость батарей, но этот путь имеет свои пределы. В качестве примера оригинального решения этой проблемы можно привести факт обнаружения сотрудниками одной из организаций, занимающейся защитой коммерческой информации, при проверке в одном из офисов радиомикрофона, установленного в макете парусного корабля. Сам макет был заполнен элементами питания на полтора года непрерывной работы. В качестве антенны использовался такелаж модели. Широко практикуется применение радиомикрофонов с питанием от внешних источников, в том числе от телефонной и радиосети. Уже упоминались изделия CAL-201 и CAL-205. Можно сказать об отечественном приборе ЛСТ-4, устанавливаемом в розетках электропитания, и ЛСТ-51, устанавливаемом в телефонной розетке. Оригинальной является модель HR560 LICHT WUD. Это радиомикрофон, встроенный в цоколь обыкновенной лампочки накаливания, с дальностью действия до 250 м. Еще одна модель радиомикрофона, предназначенного для контроля помещений и устанавливаемого в телефонной розетке, показана на рис. 1.8. Это ЧМ радиомикрофон AD-45-3. Электропитание осуществляется от телефонной линии. Дальность - до 150 м. Габариты - 22х16х12 мм, вес - 210 г. Нельзя не сказать о радиомикрофоне SIPE MT. Этот радиомикрофон с ЧМ передатчиком и с питанием от солнечной батареи выполнен в виде стакана для виски. Элементы солнечной батареи замаскированы орнаментом на дне стакана. Для повышения скрытности радиомикрофон имеет два режима: включен, если стакан стоит на столе, и отключен, если его поднять или изменить положение в пространстве. Дальность действия передатчика в диапазоне 130-150 МГц составляет 100 м. Аналогичный прибоp фирмы CCS модели STG 4104 выполнен в виде керамической пепельницы, что следует признать наиболее удачным примером маскировки, хотя применение батарей, скрытых в покрытом войлоком дне пепельницы, и ограничивает время его непрерывной работы. Встроенный ртутный выключатель отключает передатчик, если пепельницу перевернуть. Применение батарей, а также более солидный вес пепельницы позволили увеличить радиус действия прибора до 600 м. Передатчик работает на частоте 130-150 МГц.

Одним из перспективных направлений увеличения скрытности и времени эффективного использования является применение дистанционного включения. Примерами являются изделия ТRМ-1530 и ТRМ-1532. Это радиомикрофоны с питанием от батарей, габаритами 87х54х70 мм, весом около 100 г, с ЧМ передатчиком диапазона 380-400 МГц или 100-150 МГц и дальностью до 300 м. Дистанционное включение-выключение позволяет довести время эффективной работы изделия до 1 года при времени непрерывной работы 280-300 часов. Подобная аппаратура, но несколько больших габаритов, начинает поступать в продажу и от отечественных производителей. Очень перспективным является применение радиомикрофонов с активацией отзвука - музыки, речи и т.д. Такова модель STG-4001. Включение устройства происходит от звука, выключение - автоматически через 5 секунд после исчезновения звука. Применение функции включения по голосу позволило довести время эффективной работы до 300 часов. Прибор имеет очень приемлемые размеры - 20х38х12 мм, вес с батареями - 18 г, обеспечивает дальность до 500 м, частоты - 130-150 МГц. Следует подчеркнуть, что такого рода радиомикрофоны довольно трудно обнаружить. В сложных случаях возможно построение системы передатчиков. Например, при движении объекта по пути следования заранее размещаются радиомикрофоны, работающие на разных частотах. Наблюдение ведется при помощи многоканального приемника. Возможно построение схемы с использованием передатчика-ретранслятора. Мощность радиомикрофона делается очень небольшой (для увеличения времени работы и повышения скрытности), а на небольшом расстоянии, например, в соседнем помещении, устанавливается передатчик-ретранслятор, габариты и мощность которого подвергаются гораздо меньшим ограничениям. Как уже говорилось выше, дальность действия радиопередатчиков определяется в существенной степени качествами радиоприемных устройств, прежде всего, чувствительностью. В качестве приемников часто используют бытовые радиоприемные устройства. В этом случае предпочтительным является применение магнитол, т.к. появляется возможность одновременного ведения записи. К недостаткам таких устройств относятся низкая чувствительность и возможность настройки посторонних лиц на частоту передатчика. Частично эти недостатки можно устранить перестройкой частотного диапазона, в том числе с помощью конверторов, а также переналадкой усилителей для повышения чувствительности. Достоинством таких систем является низкая стоимость, а также то, что они не вызывают подозрений. Но все же предпочтительным следует считать применение специальных приемных устройств.


Технические средства получения информации.

Ниже приведены схемы устройств для прослушивания разговоров в закрытых помещениях. На рис. 1 представленны примеры схем ЧМ-передатчиков, созданных на основе туннельных диодов. Эти диоды при некоторых режимах работы обладают отрицательным динамическим сопротивлением. Благодаря этому свойству данные элементы могут выполнять функции генераторов колебаний и усилителей радиосигналов.

рис.1

Помещенный в цепь колебательного контура, туннельный диод компенсирует потери и обеспечивает генерацию незатухающих колебаний. Данные маломощные УКВ ЧМ-устройства обеспечивают передачу информации на расстоянии нескольких десятков метров при чувствительности УКВ-приемника 5-10 мкВ и длине передающей антенны 1-0,5 м для частот 70-144 МГц. Можно также увеличить мощность, следовательно и дальность действия передатчика, путем введения дополнительных схем усилителей мощности (УВЧ). Увеличение частоты позволяет уменьшить длину антенны. Это вместе с простотой конструкции позволяет создавать сверхминиатюрную аппаратуру.

Элементы для схемы 1.а:

R1=33,R2=100,R3=510; С1=20-40, С210н-68н, С3=4,7мкФ-20мкФ; D1 - туннельный диод, например, АИ201А или аналогичные; L1 - бескаркасная, 5+2 (2 витка от "земли") витков ПЭВ-2 0,8, диметр катушки 8 мм.

Настройка:

Переменным резистором R3 устанавливается рабочая точка, при которой возникает устойчивая генерация. Частота устанавливается изменением длины катушки и величины емкости С1.

Элементы для схемы 1.б:

R1=100,R2=300; С1=20-40, С210н-68н, С3=4,7мкФ-20мкФ, С4=0,1мкФ; D1 - туннельный диод, например, АИ201А или аналогичные; L1 - бескаркасная, 7 витков ПЭВ-2 0,8, внутренний диметр катушки 8 мм, L2 - бескаркасная, 3 витка ПЭВ-2 0,6, длина катушки 4 мм, внутренний диаметр катушки 2,5-3 мм.

Настройка:

Переменным резистором R1 устанавливается рабочая точка, при которой возникает устойчивая генерация. Частота устанавливается изменением длины катушки и величины емкости С1.

При необходимости можно переделать приведенные выше передатчики в радиоприемники. Для этого вместо микрофона следует использовать УНЧ с громкоговорителем или телефоны (наушники), кроме того, возможно потребуется изменить режим туннельного диода. Конечно, чувствительность такого радиоприемника будет невелика.


Схема микропередатчика, выполненного на транзисторе, приведена на рис. 2.

рис.2

Модулирующее напряжение, снимаемое с электретного микрофона МКЭ-3 (МКЭ-333, МКЭ-389, М1-А2 "Сосна"), через конденсатор С1 поступает на базу транзистора VT1, на котором выполнен задающий генератор. Так как управляющее напряжение приложено к базе транзистора VT1, то, изменяя напряжение смещения на переходе база-эмиттер, и, соответственно, емкость цепи база-эмиттер, которая является одной из составных частей колебательного контура задающего генератора, осуществляется частотная модуляция передатчика. Этот контур включает в себя также катушку индуктивности L1, расположенную по высокой частоте между базой транзистора VT1 и массой, и конденсаторами СЗ и С4. Конденсатор С4 включен в цепь обратной связи емкостной трехточки, являясь одним из плеч делителя С6 - С4, с которого и снимается напряжение обратной связи. Емкость конденсатора С4 позволяет регулировать уровень возбуждения. Во избежание влияния шунтирующего резистора R2 в цепи эмиттера транзистора VT1 на колебательный контур, которое может вызвать чрезмерное расширение полосы частот резонансной кривой, последовательно с резистором R2 включен дроссель Др1, блокирующий прохождение токов высокой частоты. Индуктивность этого дросселя должна быть около 20 мкГн. Катушка L1 бескаркасная, диаметром 3 мм намотана проводом ПЭВ 0,35 и содержит 7-8 витков.

Для получения максимально возможной мощности необходимо правильно выбрать генерирующий элемент (транзистор VT1) и установить оптимальный режим работы генератора. Для этого необходимо применять транзисторы, верхняя граничная частота которых должна превышать рабочую частоту генератора не менее чем в 7-8 раз. Этому условию наиболее полно отвечают транзисторы типа n-p-n КТЗ68, хотя можно использовать и более распространенные транзисторы КТЗ15 или КТЗ102.


Схема следующего радиопередатчика приведена на рис. 3.

рис.3

Устройство содержит минимум необходимых деталей и питается от батарейки для электронных часов напряжением 1,5 В. При столь малом напряжении питания и потребляемом токе 2-3 мА сигнал этого радиомикрофона может приниматься на удалении до 150 м. Продолжительность работы около 24 ч. Задающий генератор собран на транзисторе VT1 типа КТЗ68, режим работы которого по постоянному току задается резистором R1. Частота колебаний задается контуром в базовой цепи транзистора VT1. Этот контур включает в себя катушку L1, конденсатор СЗ и емкость цепи база-эмиттер транзистора VT1, в коллекторную цепь которого в качестве нагрузки включен контур, состоящий из катушки L2 и конденсаторов С6, С7. Конденсатор С5 включен в цепь обратной связи и позволяет регулировать уровень возбуждения генератора. В автогенераторах подобного типа частотная модуляция производится путем изменения потенциалов выводов генерирующего элемента. В чашем случае управляющее напряжение прикладывается к базе транзистора VT1, изменяя тем самым напряжение смещения на переходе база-эмиттер и, как следствие, изменяя емкость перехода базаэмиттер. Изменение этой емкости приводит к изменению резонансной частоты колебательного контура, что и приводит к появлению частотной модуляции. При использовании УКВ приемника импортного производства требуемая величина максимальной девиации несущей частоты составляет 75 кГц (для отечественного стандарта - 50 кГц) и получается при изменении напряжения звуковой частоты на базе транзистора в диапазоне 10-100 мВ. Именно по этому в данной конструкции не используется модулирующий усилитель звуковой частоты. При использовании электретного микрофона с усилителем, например, МКЭ-З, М1-Б2 "Сосна", уровня сигнала, снимаемого непосредственно с выхода микрофона, оказалось достаточно для получения требуемой девиации частоты радиомикрофона. Конденсатор С1 осуществляет фильтрацию колебаний высокой частоты. Конденсатором С7 можно в небольших пределах изменять значение несущей частоты.

Сигнал в антенну поступает через конденсатор С8,емкость которого специально выбрана малой для уменьшения влияния возмущающих факторов на частоту колебаний генератора. Антенна сделана из провода или металлического прутка длинной 60-100 см. Длину антенны можно уменьшить, если между ней и конденсатором С8 включить удлинительную катушку L3 (на рис. 3 не показана). Катушки радиомикрофона бескаркасные, диаметром 2,5 мм, намотаны виток к витку. Катушка L1 имеет 8 витков, катушка L2 - 6 витков, катушка L3 - 15 витков провода ПЭВ 0,3. При настройке устройства добиваются получения максимального сигнала высокой частоты, изменяя индуктивности катушек L1 и L2. Подбором конденсатора С7 можно немного изменять величину несущей частоты, в некоторых случаях его можно исключить.


Схема предлагаемого миниатюрного устройства заметно отличается от приведенных выше. Она проста в настройке и изготовлении, позволяет изменять частоту задающего генератора в широких пределах. Устройство сохраняет работоспособность при величине питающего напряжения млше 1 В. Схема радиопередатчика приведена на рис. 4.

рис.4

Генератор высокой частоты собран по схеме мультивибратора с индуктивной нагрузкой. Изменение частоты колебаний высокой частоты происходит при изменении тока, протекающего через транзисторы VT1, VT2 типа КТЗ68. При изменении тока зменяются параметры проводимости транзисторов и их диффузионные емкости, что позволяет варьировать частоту такого генератора в широких пределах без изменения частотозадающих элементов - катушек L1 и L2. Для повышения стабильности частоты и для возможности управления генератором с целью получения частотной модуляции питание последнего осуществляется через стабилизатор тока. Стабилизатор и модулирующий усилитель выполнены на электретном микрофоне М1 типа МКЭ-З, М1-Б2 "Сосна" и им подобным. При использовании кондиционных деталей уход несущей частоты при изменении напряжения питания с 1,5 до 12 В не превышает 150 кГц (при средней частоте генератора равной 100 МГц).

В схеме используются бескаркасные катушки L1 и L2 диаметром 2,5 мм. Для диапазона 65-108 МГц катушки содержат по 15 витков провода ПЭВ 0,3. Настройка заключается в подгонке частоты путем изменения индуктивности катушек L1 и L2 (сжатием или растяжением). Рассматриваемый генератор может работать на частотах до 2 ГГц, при использовании транзисторов типа КТЗ86, КТЗ101, КТЗ124 и им подобных и при изменении конструкции контурных катушек.


Этот передатчик при весьма малых размерах позволяет передавать информацию на расстоянии до 300 м. Прием сигнала может вестись на любой приемник УКВ ЧМ диапазона. Для питания может быть использован любой источник питания с напряжением 5-15 В. Схема передатчика приведена на рис. 5.

рис.5

Задающий генератор передатчика выполнен на полевом транзисторе VT2 типа КП 303. Частота генерации определяется элементами L1, С5, С3, VD2. Частотная модуляция осуществляется путем подачи модулирующего напряжения звуковой частоты на варикап VD2 типа КВ109. Рабочая точка варикапа задается напряжением, поступающим через резистор R2 со стабилизатора напряжения. Стабилизатор включает в себя генератор стабильного тока на полевом транзисторе VT1 типа КП103, стабилитрон VD1 типа КС147А и конденсатор С2. Усилитель мощности выполнен на транзисторе VT3 типа КТЗ68. Режим работы усилителя задается резистором R4. В качестве антенны используется отрезок провода длиной 15-50 см. Дроссели Др1 и Др2 могут быть любые, с индуктивностью 10-150 мГн. Катушки L1 и L2 наматываются на полистироловых каркасах диаметром 5 мм с подстроечными сердечниками 100 ВЧ или 50 ВЧ. Количество витков - 3,5 с отводом от середины, шаг намотки 1 мм, провод ПЭВ 0,5 мм. Вместо транзистора КП 303 можно использовать КП 302, КП 307. Настройка заключается в установке необходимой частоты генератора конденсатором С5, получения максимальной выходной мощности путем подбора сопротивления резистора R4 и подстройке резонансной частоты контура конденсатором С10.


Устройство на рис. 6 может работает в диапазоне 65-108 МГц с частотной модуляцией. Дальность действия около 100 м при использовании компактной антенны. При использовании штыревой антенны дальность может достигать 500-600 м.

рис.6

Сигнал от электретного микрофона М1 типа МКЭ-3 поступает на двухкаскадный низкочастотный усилитель с непосредственными связями на транзисторах VT1, VT2 типа КТЗ15. Рабочая точка усилителя устанавливается автоматически цепью обратной связи по постоянному току через R5, R6, С3. Усиленный низкочастотный сигнал с коллектора транзистора VT2 через фильтр низкой частоты на элементах R9, С4 и резистор R10 поступает на варикап VD1 типа КВ109, включенный в эмиттерную цепь транзистора VT3 типа КТ904. Напряжение смещения на варикап VD1 задается коллекторным напряжением транзистора VT2. Однокаскадный ВЧ генератор выполнен на транзисторе VT3. Напряжение смещения на базе этого транзистора задается резистором R11. Транзистор VT3 включен по схеме с общей базой. В его коллекторной цепи включен контур С8, С9, L1. Частота настройки генератора определяется индуктивностью катушки L1 и емкостями С8, С5, VD1. Конденсатор С9 устанавливает глубину обратной связи, а конденсатор С10 согласует контур с антенной.

Все детали передатчика малогабаритные. Дроссель Др1 типа ДПМ 0,1 на 60 мкГн. Его можно заменить на самодельный, намотанный на резисторе МЛТ-0,25 сопротивлением более 100 ком проводом ПЭВ 0.1 100 витков. Катушка L1 - бескаркасная, с внутренним диаметром 8 мм, имеет 7 витков провода ПЭВ 0,8 мм. Компактная катушечная антенна выполнена тем же проводом, ее общая длина составляет 50 см. Катушка имеет диаметр 3 см. Если используется обычная антенна, то это провод или штырь длиной 0,75-1,0 м.

При настройке конденсатором С8 настраивают радиомикрофон на свободный участок УКВ ЧМ диапазона. Конденсаторами С9 и С10 настраивают генератор на максимальную дальность связи. Мощность передатчика составляет около 200 мВт. Если такая мощность не нужна, то ее легко понизить, увеличив вместе с тем срок службы источника питания. Для этого нужно увеличить сопротивление резистора R11 до 68-100 кОм и заменить дроссель Др1 на постоянный резистор сопротивлением 180-330 Ом. Так как в этом случае мощность радиомикрофона будет около 10 мВт, то транзистор VT3 можно заменить на КТ315 или КТ3102. Транзисторы VT1, VT2 могут быть заменены на КТ3102, а транзистор VT3 - на КТ606, КТ907.

Для питания устройства используется батарея на 9 В типа "Крона", "Корунд" или аккумулятор 7Д-0,15.


Этот передатчик отличается от других тем, что у него нет катушки индуктивности. Дальность такого передатчика составляет 50...100 метров. Рабочий диапазон- 66...76 МГц. Схема представлена на рис. 7.

рис.7

Сигнал с микрофона подается на вход (выводы 1 и 2) генератора, собранного на элементах DD1.1...DD1.4. На выходе (вывод 11) генератора получаются модулированные высокочастотные колебания, которые излучаются антенной WA1 в пространство. Настройка передатчика на требуемую частоту производится резистором R1. Для стабильной работы передатчика, при изменении питающего напряжения, в его схеме имеется стабилизатор напряжения, собранный на транзисторах VT1 и VT2. Питание передатчика осуществляется от источника с напряжением 6...9 В. В качестве антенны WA1 можно использовать металлический штырь длиной около 1 метра или телескопическую антенну.

Настройка передатчика начинается с установки резистором R2 тока 15...20 мА (место на схеме показано крестиком). Далее резистором R1 устанавливают необходимую частоту.


На рис. 8 показана схема ЧМ-микропередатчика, который выполнен на одном четырехвходовом элементе ТТЛ И-НЕ, три логических входа которого заведены на нагруженный емкостью выход и обеспечивают самовозбуждение, а четвертый питает и одновременно снимает звуковое напряжение с электретного микрофона, обеспечивая частотную модуляцию несущей.

рис.8

Устройство работает в диапазоне 80-00 МГц, частота настройки регулируется триммером С1. Антенной служит отрезок медного провода длиной 15 см.


На рис. 9 показана схема радиомикрофона, выполненного на составном транзисторе структуры p-n-p и n-p-n. Высокочастотный генератор выполнен на транзисторе VT2, усилитель низкой частоты - на составном транзисторе. Микрофон- МКЭ-3, содержащий встроенный предусилитель на полевом транзисторе.

рис.9

Катушка индуктивности для УКВ диапазона 66...74 МГц содержит 6 витков провода ПЭВ-2 0,56 мм. Внутренний диаметр катушки - 4 мм; шаг намотки - 1,5 мм. Рабочая частота генератора изменяется путем изминения длины катушки. В качестве антенны используют отрезок провода длиной 20...30 см. Поскольку антенна является элементом олебательного контура, постоянство частоты генерации соблюдается при неизменном положении антенны относительно элементов генератора; на частоту генератора оказывают влияние и приближение посторонних предметов.

Для снижения влияния дестабилизирующих факторов связь радиомикрофона с антенной может быть ослаблена включением последовательно с антенной конденсатора небольшой емкости (единицы пФ), а также выполнением антенны в виде прутка.

рис.10

Устройство потребляет ток до 10 мА. Амплитуда транслируемого звукового сигнала может изменятся от громкого разговора на расстоянии 15 см от микрофона до шепота на расстоянии 3...5 м (т.е. более чем на 70...80 дб).

Печатная плата радиомикрофона с расположением деталей показана на рис. 10.


Устройство, представленное на рис. 11, представляет собой телефонный радиоадаптер параллельного типа и предназначено для трансляции звуковых сигналов по высочастотному каналу. Передатчик может питаться непосредственно от телефонной линии 60 В, потребляя при этом ток до 2 мА; при снятии телефонной трубки (снижение напряжения питания) радиомикрофон отключается.

В схеме использовано каскадное включение транзисторо, при котором для сигналов низкой частоты нагрузкой в коллекторной цепи транзистора VT2 является высокочастотный генератор, выполненный на транзисторе VT1. В свою очередь, для токов высокой частоты в эмиттерной цепи транзистора VT1 использован каскад усиления на транзисторе VT2.

рис.11

При питании устройства от телефонной линии подключать антенну необязательно, поскольку сама телефонная линия играет роль достаточно протяженной антенны. Прием высокочастотных возможен на портативный ЧМ-приемник вдоль телефонной линии; при удалении от линии на несколько метров сигнал быстро затухает. В схеме предусмотрена возможность автономного питания от батареи напряжением 9 В. В этом случае устройство становится обычным радиомикрофоном, и к нему необходимо подключить антенну. Устройство имеет защиту от неправильного подключения источника питания и от превышения напряжения - диод VD1 и стабилитрон VD2. Так, при неправильном полярности подключения устройство не будет работать, а если подать напряжение 60 В с телефонной линии на вход питания 9 В, телефонная линия через резистор R1 и стабилитрон VD2, а также за счет своего внутреннего сопротивления ограничивает ток короткого замыкания, и элементы схемы защищены.

Устройство имеет габариты 35х10х10 мм. Транзистор VT1 можно заменить на КТ611БМ, VT2 - на КТ315Г.




Технические средства защиты информации.

Здесь даны описания, принципы работы и настройка детекторов радиоизлучений, с помощью которых можно обнаруживать активизированные каналы утечки информации.

Устройство на рис. 12 представляет собой простейший детектор радиоволн со звуковой индикацией. С его помощью можно отыскать в помещении работающий микропередатчик. Детектор радиоволн чувствителен к частотам вплоть до 500 МГц. Настраивать детектор при поиске работающих передатчиков можно путем изменения длины телескопической приемной антенны.

рис.12

Телескопическая приемная антенна воспринимает высокочастотные электромагнитные колебания в диапазоне до 500 МГц, которые затем детектируются диодом VD1 типа Д9Б. Высокочастотная составляющая сигнала отфильтровывается дросселем L1 (низкочастотный, намотан на ферритовом кольце 2000 НМ типоразмера 12х7х4 мм, содержит 200 витков ПЭЛ 0,1) и конденсатором С1. Низкочастотный сигнал поступает через резистор R1 на базу транзистора VT1 типа КТ315, что приводит к открыванию последнего и, как следствие, к открыванию транзистора VT2 типа КТ361. При этом на резисторе R4 появляется положительное напряжение, близкое к напряжению питания, которое воспринимается логическим элементом DD1.1 микросхемы DD1 типа К561ЛА7 как уровень логической единицы. При этом включается генератор импульсов на элементах DD1.1, DD1.2, R5 и С3. С его выхода импульсы с частотой 2 кГц поступают на вход буферного каскада на элементах DD1.3, DD1.4. Нагрузкой этого каскада служит звуковой пьезокерамический преобразователь ZQ1 типа ЗП-1, который преобразует электрические колебания частотой 2 кГц в акустические. С целью увеличения громкости звучания преобразователь ZQ1 включен между входом и выходом элемента DD1.4 микросхемы DD1. Питается детектор от источника тока напряжением 9 В через параметрический стабилизатор на элементах VD2, R6.

В детекторе используются резисторы типа МЛТ-0,125. Диод VD1 можно заменить на ГД507 или любой германиевый высокочастотный. Транзисторы VT1 и VT2 могут быть заменены на КТ3102 и КТ3107 соответственно. Стабилитрон VD2 может быть любым с напряжением стабилизации 4,7-7 В. Пьезокерамический преобразователь ZQ1 можно заменить на ЗП-22.

Настраивать детектор лучше всего с использованием высокочастотного генератора. Подключите к выходу генератора изолированный провод - антенну, и параллельно ему расположите антенну детектора. Таким образом вы слабо свяжете детектор с генератором. Исследуйте весь радиодиапазон, начиная с частоты 500 кГц и до точки, где детектор перестанет воспринимать радиоволны. Заметьте, как с изменением частоты изменяется чувствительность детектора.


Данная конструкция отличается малыми габаритами, малым количеством используемых деталой и, вместе с тем, достаточно высокой чувствительностью. В этом детекторе поля использовано новое схемное решение. Хорошо известно, что измерение ВЧ напряжений, меньших 0,5 В, затруднено тем, что уже при переменном напряжении менее 0,2-0,3 В все полупроводниковые диоды становятся неэффективными. Существует, однако, способ измерения малых переменных напряжений с использованием сбалансированного диодно-резистивного моста, позволяющий измерять напряжение менее 20 мВ при равномерной АХЧ до 900 МГц. Принципиальная схема устройства, использующего данный способ, приведена на рис. 13.

рис.13

Основу данного устройства составляет микросхема DА1 типа КР1112ПП2. Эта микросхема включает в себя устройство, определения баланса электрического моста с индикацией. Микросхема имеет встроенный источник опорного напряжения.

Сигнал, наводимый в антенне, усиливается широкополосным апериодическим усилителем высокой частоты на транзисторе VT1 типа KT3101. Усиленное переменное напряжение высокой частоты через конденсатор СЗ поступает в диодно-резистивный мост на диодах VD1 - VD4 типа ГД507 и резисторах R3-R5. От источника опорного напряжения (вывод 3 микросхемы DA1) через резисторы R3-R5 и диоды VD1-VD4 протекает небольшой (примерно несколько микроампер) прямой ток, который улучшает условия детектирования и увеличивает чувствительность детектора. В выпрямлении измеряемого переменного напряжения участвуют только диоды VD1 и VD2, а два других - VD3, VD4 - образуют соседнее плечо моста, на котором создается начальное напряжение, балансирующее мост, и одновременно служат для его термокомпенсации. Все диоды подобраны с возможно более близкими вольт-амперными характеристиками. Конденсатор С4 отфильтровывает переменную составляющую выпрямленного напряжения. Резистор R4 служит для точной балансировки моста. При хорошей балансировке устройство будет реагировать только на напряжение, являющееся результатом выпрямления измеряемого сигнала. Выпрямленное напряжение и напряжение, балансирующее мост, через резисторы R7 и R8 поступают на входы усилителя постоянного тока, расположенного в микросхеме DA1. В зависимости от состояния баланса моста сигнал индикации поступает на один из светодиодов VD5 или VD6 - типа АЛЗО7. Таким образом, при балансе моста (отсутствие сигнала) включен светодиод VD5, а при наличии сигнала (нарушение баланса моста) - светодиод VD6.

В качестве диодов VD1-VD4 можно использовать любые высокочастотные диоды. Светодиоды могут быть любого типа. В качестве источника питания используется источник постоянного тока напряжением 2,5-5 В.

Данное устройство имеет усилитель ВЧ и детектор на сбалансированном резистивно-диодном мосте. Отличительной особенностью данного детектора поля является: фильтр высокой частоты на входе, усилитель постоянного тока на двух операционных усилителях, звуковой генератор, линейная светодиодная шкала и индикатор разряда батареи. Все это делает данное устройство несомненно более простым и удобным в эксплуатации. Принципиальная схема детектора поля приведена на рис. 14.

рис.14

Сигнал, принимаемый антенной, поступает на фильтр высокой частоты на элементах С2, L1, С3, L2, необходимый для подавления сигналов частотой менее 20 МГц. Это необходимо для уменьшения уровня низкочастотных сигналов, обычно составляющих фоновое радиоиз.чучение. С ФВЧ сигналы частотой более 20 МГц поступают на вход апериодического широкополосного усилителя высокой частоты, собранного на транзисторе VT1 типа КТ3101. С нагрузки усилителя pезистора R2 - напряжение высокой частоты через конденсатор С5 поступает на диоды VD1, VD2 типа ГД507, входящие в состав резистивно-диодного моста. Для балансировки моста используется резистор R4.

Продетектированное низкочастотное напряжение, сглаженное конденсатором С6, поступает на усилитель постоянного тока, выполненный на двух операционных усилителях DA1.1 и DA1.2, входящих в состав микросхемы К1401УД1. С выхода элемента DA1.1 постоянное напряжение поступает на генератор звуковой частоты, выполненный на операционном усилителе DA1.3. Частота генератора зависит от уровня постоянного напряжения на неинвертирующем входе элемента DА1.3, которое, в свою очередь, зависит от уровня входного сигнала. Таким образом, чем больше уровень входного сигнала, тем выше частота генератора звуковой частоты. С выхода генератора звуковой сигнал поступает на базу транзистора VT4 типа, КТ315, в коллекторную цепь которого включен пьезокерамический преобразователь ZQ1 типа ЗП-1.

Микросхемы DA2 и DA3 типа К1401УД1 составляют основу линейной шкалы. Операционные усилители, входящие в состав этих микросхем, включены по схеме компараторов напряжения. На неинвертирующие входы этих компараторов поступает опорное напряжение с линейки резисторов R14-R21. Другие входы компараторов соединены вместе, на них поступает постоянное напряжение с выхода усилителя постоянного тока DA1.2. При изменении этого напряжения от 0 до максимального значения происходит переключение компараторов, на выходе которых включены светодиоды VD5-VD14, образующие линейную светоизлучающую шкалу. Чем выше уровень сигнала на входе, тем больше светодиодов включено. Для уменьшения потребляемого светодиодной шкалой тока используется принцип динамической индикации. Для этого на базу транзистора VT2 типа КТ315 поступают импульсы с генератора звуковой частоты DA1.3, вызывая поочередное закрывание и открывание транзистора VT2. При закрывании транзистора VT2 положительное напряжение источника питания через резистор R32 поступает на катоды светодиодов VD5-VD14, что приводит к запиранию последних. Ток через светодиоды не течет и они гаснут. При открывании транзистора VT2 катоды светодиодов замыкаются на минус источника питания, и те светодиоды, на аноде которых присутствует положительное напряжение, загораются. Благодаря инерционным-свойствам человеческого глаза мигание светодиодов становится незаметным. Индикатор разряда батареи выполнен на элементе DА1.4 и светодиодах VD13, VD14. При снижении напряжения источника питания уменьшается ток, протекающий через стабилитрон VD15 и светодиод VD13 и, соответственно, напряжение на аноде VD13. Это вызывает включение светодиода VD14. Уровень срабатывания устанавливается подстроечным резистором R33 при настройке. Все устpoйство питается от стабилизатора, собранного на элементах VT3, VD15, VD13, R34, С8.

В устройстве использованы резисторы типа МЛТ-0,125. Светодиоды VD5-VD14 могут быть любыми. Диоды VD1-VD4 - любые высокочастотные германиевые. Катушки L1 и L2 бескаркасные, диаметром 8 мм, намотанные проводом ПЭВ 0,6 мм. Катушка L1 - 8 витков, катушка L2 - 6 витков. Резистор R4 - любой переменный резистор с линейной характеристикой. Транзисторы VT2-VT4 могут быть типа КТ3102. Стабилитрон VD15 можно заменить на КС147, КС168, КС170. Пьезокерамический преобразователь ZQ1 - любой. Можно также использовать динамическую головку сопротивлением более 50 Ом, резистор R36 при этом можно из схемы исключить.

Настройка схемы особенностей не имеет. Перед началом работы необходимо настроить детектор на максимальную чувствительность резистором R4. Вращением движка резистора R4 добиваются свечения 1-2 светодиодов и выключения звуковой сигнализации. Прибор готов к работе.


Если вы хотите пополнить этот сайт своей статьёй, то шлите ёе мне на E-mail и она обязательно появится в этой рубрике, с сылкой на автора.


Copyright © 2003-2004 Tuhvatullin Vitaliy

Rambler's Top100 .:: GRID-Club ::. Найдете все ответы на интереующие Вас вопросы! SmarT ICQ. Все про и для ICQ. Ежедневные новости, Софт, Статьи, Юины, Раздача, Форум.
Hosted by uCoz